Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 7(78): eade9888, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36378074

RESUMO

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30-amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 is associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). In continuation of our previous work, we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the neutralizing antibody response upon breakthrough infection in vaccinated individuals and upon variant-adapted booster vaccination in mice. We found that immune sera from triple mRNA-vaccinated individuals with subsequent breakthrough infection during the Omicron BA.4/BA.5 wave showed cross-neutralizing activity against previous Omicron variants BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 itself. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice after SARS-CoV-2 wild-type strain-based primary immunization is associated with broader cross-neutralizing activity than a BA.1-adapted booster. Whereas the Omicron BA.1-adapted mRNA vaccine in a bivalent format (wild-type + BA.1) broadens cross-neutralizing activity relative to the BA.1 monovalent booster, cross-neutralization of BA.2 and descendants is more effective in mice boosted with a bivalent wild-type + BA.4/BA.5 vaccine. In naïve mice, primary immunization with the bivalent wild-type + Omicron BA.4/BA.5 vaccine induces strong cross-neutralizing activity against Omicron VOCs and previous variants. These findings suggest that, when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines enhance neutralization breadth and that the bivalent version also has the potential to confer protection to individuals with no preexisting immunity against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Infecções Irruptivas , RNA Mensageiro
2.
EJNMMI Res ; 11(1): 14, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33569663

RESUMO

BACKGROUND: RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein. For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. RESULTS: NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. CONCLUSIONS: The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA.

3.
Drug Deliv ; 24(1): 932-941, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28617150

RESUMO

Atorvastatin (AT) is a widely used lipid-regulating drug to reduce cholesterol and triglycerides. Its poor aqueous solubility and hepatic metabolism require development of drug delivery systems able to improve its solubility and bypass hepatic effect. For this purpose, atorvastatin nanostructured lipid carriers (AT-NLCs) were prepared and characterized. AT-NLCs were prepared by emulsification using high-speed homogenization followed by ultrasonication. The prepared NLCs showed particle size between 162.5 ± 12 and 865.55 ± 28 nm while zeta potential values varied between -34 ± 0.29 and -23 ± 0.36 mV. They also showed high encapsulation efficiency (>87%) and amorphous state of the drug in lipid matrix. Pharmacokinetic parameters of optimized formulation (NLC-1; composed of 2% Gelucire® 43/01, 8% Capryol® PGMC, 2% Pluronic®F68 and 0.5% lecithin) revealed 3.6- and 2.1-fold increase in bioavailability as compared to atorvastatin suspension and commercial product (Lipitor®), respectively. Administration of NLC-1 led to significant reduction (p < .05) in the rats' serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and significant increase in high-density lipoprotein (HDL). This improvement was confirmed histologically by minimizing the associated hepatic steatosis. These investigations demonstrated the superiority of NLCs for improvement of oral bioavailability and in vivo performance of AT.


Assuntos
Nanoestruturas , Administração Oral , Animais , Atorvastatina , Portadores de Fármacos , Lipídeos , Tamanho da Partícula , Ratos
4.
Nature ; 534(7607): 396-401, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281205

RESUMO

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , RNA/administração & dosagem , Administração Intravenosa , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Antígenos Virais/genética , Autoantígenos/genética , Autoantígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Ensaios Clínicos Fase I como Assunto , Células Dendríticas/citologia , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , RNA/genética , Eletricidade Estática , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor 7 Toll-Like/imunologia
5.
J Control Release ; 150(3): 279-86, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20888878

RESUMO

The transfer kinetics of temoporfin, a classic photosensitizer, was analyzed by investigating the influence of total lipid content, temperature, as well as charge, acyl chain length, and saturation of the lipids in donor vesicles using a mini ion exchange column technique. The obtained results are consistent with an apparent first order kinetics in which the transfer proceeds through both liposome collisions and through the aqueous phase. We present a corresponding theoretical model that accounts for the detailed distribution of drug molecules in donor and acceptor liposomes and predicts the transfer rates as a function of drug concentration and number of donor and acceptor liposomes. The experimentally observed transfer rates depended strongly on the temperature and comply with the Arrhenius equation. Thermodynamic calculations indicate the transfer process to be entropically controlled. In terms of the charge of donor liposomes, positively charged liposomes showed transfer rates faster than negatively charged liposomes whereas the maximum amount transferred was almost the same. A more rigid structure of the donor liposomes increases the transfer rate of temoporfin, which is caused by expelling the drug from the membrane interior, as proposed in former work. In summary, our combined theoretical/experimental approach offers a systematic way to study the mechanism of drug release from liposome-based delivery systems.


Assuntos
Lipossomos/química , Mesoporfirinas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Cinética , Modelos Químicos
6.
Chem Pharm Bull (Tokyo) ; 56(10): 1417-22, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18827381

RESUMO

We propose a reversed phase HPLC (RP-HPLC) with an alkaline-resistant silica-based stationary phase, XBridge Shield RP(18), for the determination of the lipophilicity of drugs with diverse chemical nature ranging from acidic to basic. A set of 40 model compounds with well-defined solvatochromic parameters was selected to allow a broad distribution of structural properties. The chromatographic results showed that the lipophilicity index log k(w) obtained with XBridge Shield RP(18) was well correlated with experimental log P(oct) values (r(2)=0.96). Linear solvation free-energy relationship (LSER) analyses revealed that the retention mechanism of the stationary phase and 1-octanol/water partitioning were controlled by almost the same balance of intermolecular forces (hydrophobicity as expressed by the van der Waals volume V(w), H-bond acceptor basicity beta, and dipolarity/polarizability pi*). The results showed that XBridge Shield RP(18) phase overcomes the shortcomings of the silica-based stationary phases, the application of which to lipophilicity measurements had been limited to neutral and acidic compounds.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeos/química , Preparações Farmacêuticas/química , Dióxido de Silício/química , 1-Octanol/química , Algoritmos , Álcalis , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio , Compostos de Organossilício/química , Solventes , Espectrofotometria Ultravioleta , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...